Corvus Corporate Presentation

H.C. Wainwright 22nd Annual Global Investment Conference September 14, 2020

Forward-Looking Statements / Safe Harbor

This presentation and the accompanying oral presentation contain "forward-looking" statements, including statements related to the potential safety and efficacy of ciforadenant, CPI-006, and CPI-818, the Company's ability to identify and utilize the adenosine gene signature or the CD68+ gene for purposes of its clinical trials, including the Company's Phase 1b/2 clinical trial of ciforadenant, the Company's ability to develop and advance product candidates into and successfully complete preclinical studies and clinical trials, including the Company's Phase 1b/2 clinical trial of ciforadenant, and the Company's Phase 1/1b clinical trials of CPI-006 and CPI-818, in each case, for certain cancers, as well as the Company's Phase 1 trial of CPI-006 for COVID-19, the timing and availability and announcement of clinical data, the suitability of dosing regimens selected for clinical trials, and the impact of COVID-19 and related "shelter in place" orders and other public health guidance measures on our clinical programs and business operations. All statements other than statements of historical fact contained in this press release are forward-looking statements. These statements often include words such as "believe," "expect," "anticipate," "intend," "plan," "estimate," "seek," "will," "may" or similar expressions. Forward-looking statements are subject to a number of risks and uncertainties, many of which involve factors or circumstances that are beyond the Company's control. The Company's actual results could differ materially from those stated or implied in forward-looking statements due to a number of factors, including but not limited to, risks detailed in the Company's Quarterly Report on Form 10-Q for the quarter ended June 30, 2020, filed with the Securities and Exchange Commission on July 30, 2020, as well as other documents that may be filed by the Company from time to time with the Securities and Exchange Commission. In particular, the following factors, among others, could cause results to differ materially from those expressed or implied by such forward-looking statements: the Company's ability to demonstrate sufficient evidence of efficacy and safety in its clinical trials of ciforadenant, CPI-006 and CPI-818; the accuracy of the Company's estimates relating to its ability to initiate and/or complete preclinical studies and clinical trials: the Company's ability to utilize biomarker data and select a suitable dosing regimen; the results of preclinical studies may not be predictive of future results; the Company's ability to raise additional capital and the effects of COVID-19 on the Company's clinical programs and business operations. Although the Company believes that the expectations reflected in the forward-looking statements are reasonable, it cannot guarantee that the events and circumstances reflected in the forward-looking statements will be achieved or occur, and the timing of events and circumstances and actual results could differ materially from those projected in the forward-looking statements. Accordingly, you should not place undue reliance on these forward-looking statements. All such statements speak only as of the date made, and the Company undertakes no obligation to update or revise publicly any forward-looking statements, whether as a result of new information, future events or otherwise.

This presentation concerns products that are under clinical investigation and which have not yet been approved for marketing by the U.S. Food and Drug Administration. Such products are currently limited by Federal law to investigational use, and no representation is made as to its safety or effectiveness for the purposes for which it is being investigated.

Corvus Pharmaceuticals Overview

		DEVELOPMENT STATUS				
		Lead Optimization	IND-Enabling	Phase 1/1b	Phase 1b/2	
INFECTIOUS DISEASE						
B Cell Activator	• COVID-19	CPI-006				
ONCOLOGY						
A2AR Inhibitor	Renal CellMultiple Myeloma	Ciforadenant				
Anti-CD73 Immune Activator	Multiple Cancers	CPI-006				
ITK Inhibitor	• T-Cell Lymphoma	CPI-818				
Anti-CXCR2	Multiple Cancers	CPI-182				
A2BR Inhibitor	Fibrosis	CPI-935				

VUS

Corvus Pharmaceuticals

CPI-006 B Cell Activating Monoclonal Antibody for Treatment of COVID-19

Activating the Immune System to Fight COVID-19

B Cell Activating Immunotherapy for COVID-19 Therapeutic vaccination

ORVUS

CPI-006 B Cell Activating Antibody COVID-19 Phase 1 study design

- Objective: Increase anti-SARS-CoV-2 antibody response to improve clinical outcomes
- **Number and Patients:** Up to 30 hospitalized COVID-19 patients with mild-to-moderate symptoms
- Treatment: Single dose
- Endpoints:
 - Change in serum IgM and IgG anti-SARS-CoV-2 antibody levels at day 28 vs. baseline
 - Time to resolution of symptoms and discharge
 - Safety
- Study Sites: Temple University, Mount Sinai, and others
- **Results:** Anticipated at SITC meeting in November

Patient Characteristics CPI-006-002

$\langle \mathcal{Q} \rangle$	CORVUS				
	PHARMACEUTICALS				

Patient ID (dose)	Age, Gender, Race	BMI	Onset of Symptoms to CPI-006	Comorbidities	Baseline ALC K/mm3	Disposition
1002 (0.3 mg/kg)	72, M, White	32.1	1 day	Diabetes, CAD, HTN	0.9	Discharged Day 4
1003 (0.3 mg/kg)	28, M, African American	29.9	4 days	Diabetes	1.5	Discharged Day 6
1004 (0.3 mg/kg)	48, M, African American	32.3	8 days	Asthma	1.3	Discharged Day 4
1005 (0.3 mg/kg)	64, F, Hispanic/White	30.3	4 days	Breast cancer, HTN	1.3	Discharged Day 5
1006 (0.3 mg/kg)	28, F, African American	33.7	5 days	Asthma	0.8	Discharged Day 4
1007 (1.0 mg/kg)	67, M, African American	16.5	15 days	HTN, CAD, COPD	1.1	Discharged Day 7
1008 (1.0 mg/kg)	76, F, African American	35.1	4 days	Diabetes, HTN	0.6	Discharged Day 6
1009 (1.0 mg/kg)	67, M, Asian	28.9	8 days	BPH	0.9	Discharged Day 4
1010 (1.0 mg/kg)	63, M, Hispanic	33.2	>21 days	Sleep apnea, HTN, Diabetes	0.9	Discharged Day 6
1012 (1.0 mg/kg)	37, F, Other	32.1	3 days		1.2	Discharged Day 3

No treatment related AEs reported to date

Antibody Titers Following Treatment

Increasing titers of IgG and IgM toward SARS-CoV-2 RBD and spike antigens

Each symbol represents an individual patient: open symbols = 0.3 mg/kg, filled symbols = 1.0 mg/kgControl = convalescent serum from recovered patients at 4-6 weeks; Pre = Pre CPI-006 *P* values between each timepoint and control group: * p < 0.05; ** p < 0.01

Duration of Symptoms and Antibody Titers Following Treatment

- Anti-SARS-CoV-2 antibody response pre and post CPI-006 treatment in relation to days after onset of symptoms
- Neutralizing antibody titer continually increases

Each symbol represents an individual patient: open symbols = 0.3 mg/kg, filled symbols = 1.0 mg/kg *Tan et al, Nature Biotech. Published online 23 July 2020 Pre = Pre CPI-006, values against each point represent days post treatment of CPI-006

Dynamic Changes of the SARS-CoV-2 Specific IgG

Time course of the virus-specific IgG level in 19 symptomatic patients experienced IgG titer plateau. IgG in each patient reached plateau within 6 days since IgG became positive.

Dynamic Changes of the SARS-CoV-2 Specific IgM

Time course of the virus-specific IgM level in 20 patients experienced IgM titer plateau. IgM in each patient reached plateau within 6 days since IgM became positive

Effects on Memory B Cells and T Cells Increases memory B cells and SARS-CoV-2 antigen-specific T cells

Placebo Controlled Randomized Phase 3 study-CPI-006 in Hospitalized COVID-19 Patients

Study Design:Placebo controlled, double- blind, multicenter, stratified, randomized
phase 3 study with 1:1 randomization

Primary Endpoint:Difference in Time to recovery during the 28 days after dosing
according to 8-point ordinal scale

Broad Spectrum of Potential Applications in COVID-19

Cancer Discovery January 2020 - Publication & Editorial

Adenosine 2A Receptor Blockade as an Immunotherapy for Treatment-Refractory Renal Cell Cancer

Lawrence Fong¹, Andrew Hotson², John D. Powderly³, Mario Sznol⁴, Rebecca S. Heist⁵, Toni K. Choueiri⁶, Saby George⁷, Brett G.M. Hughes⁸, Matthew D. Hellmann⁹, Dale R. Shepard¹⁰, Brian I. Rini¹⁰, Shivaani Kummar¹¹, Amy M. Weise¹², Matthew J. Riese¹³, Ben Markman¹⁴, Leisha A. Emens¹⁵, Daruka Mahadevan¹⁶, Jason J. Luke¹⁷, Ginna Laport², Joshua D. Brody¹⁸, Leonel Hernandez-Aya¹⁹, Philip Bonomi²⁰, Jonathan W. Goldman²¹, Lyudmyla Berim²², Daniel J. Renouf²³, Rachel A. Goodwin²⁴, Brian Munneke², Po Y. Ho², Jessica Hsieh², Ian McCaffery², Long Kwei², Stephen B. Willingham², and Richard A. Miller² "Fong and colleagues describe... tumor regression, disease control, and survival of patients with otherwise refractory renal cell cancer with progressive disease after treatment with the conceptually novel.... ciforadenant."

"Fong and colleagues are among the first clinical development teams that aimed to block not only the immunologic negative regulators, but also the powerful A2Aadenosinergic negative regulators of antitumor immunity."

IN THE SPOTLIGHT

Lessons from the A2A Adenosine Receptor Antagonist-Enabled Tumor Regression and Survival in Patients with Treatment-Refractory Renal Cell Cancer

Michail V. Sitkovsky

Ciforadenant: Adenosine Gene Expression Signature Correlates with Efficacy

Ciforadenant Monotherapy

Ciforadenant + Atezolizumab

-80

* On study treatment as of Apr 2020

Decrease in SLD

%

Maximum

in SLD

Decrease

%

-80 -90

-100

* IO Naive

All others resistant/refractory to prior IO

15

ORVUS PHARMACEUTICAL

Confirming the Predictive Value of the Adenosine Signature

Hakimi, et al, ASCO 2020

Multivariate models of Necurrence. Dr o								
		Р	HR	Lower 95% CL	Upper 95% CL			
Myeloid_Angio Group	L_H	REF						
	H_H	0.002	3.59	1.59	8.1			
	H_L	<0.0001	7.60	3.48	16.6			
	L_L	0.1	2.09	0.87	5.05			
Multivariate DFS Model. Integration of Myeloid and Angio subgroups into cox regression models of adverse disease free in the Placebo arm (n=202 patients with available UCLA Integrated Staging Systems data).								

Multivariate Models of Recurrence: DFS

AdenoSig Survival in RCC from TCGA

McDermott, et al, Nature Med 24:749, 2018

Overview of Ciforadenant Clinical Development Plan in RCC

- FDA meeting to discuss overall development strategy
- Ph2 single arm study in high unmet medical need population
- Ph3 confirmatory study

CPI-818: ITK and BTK are Homologous Kinases

The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy *PNAS 2010*

Lee A. Honigberg^{a,1}, Ashley M. Smith^{a,1}, Mint Sirisawad^a, Erik Verner^a, David Loury^a, Betty Chang^a, Shyr Li^{b,c}, Zhengying Pan^{b,d}, Douglas H. Thamm^e, Richard A. Miller^{a,f}, and Joseph J. Buggy^{a,2}

CPI-818-001 Phase 1/1b Clinical Trial Design ITK inhibitor for T cell lymphomas

- **Objectives:** Dose escalation and dose expansion
- Patients: T-cell lymphoma (PTCL and CTCL) R/R
- Treatment: CPI-818 orally BID
- Endpoints:
 - Primary: Safety/tolerability
 - Secondary: PK/PD, biomarkers and efficacy
- **Biomarkers:** ITK occupancy in peripheral blood, tissue, cytokines, T-cell subsets
- **Results:** Dose escalation complete, expansion phase initiated

Disease Assessment in Dose Escalation PTCL and CTCL dose escalation cohorts

Near-Term Milestones and Value-Drivers

